FAR-INFRARED HYDRAZINE LASER PUMPED BY AN N2O LASER

E. C. C. Vasconcellos, M. Tachikawa, L. R. Zink, and K. M. Evenson,

¹Instituto de Física "Gleb Wataghin"
Departamento de Eletrônica Quântica
Universidade Estadual de Campinas (UNICAMP)
13083-970 Campinas, SP, Brazil
²Department of Physics
Meiji University
1-1-1 Higashimita, Tama-ku Kawasaki Kanagawa 214, Japan
³Time and Frequency Division
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80303-3328, USA

Received October 2, 1997

ABSTRACT

We have used an N_2O laser to optically pump N_2H_4 molecules in a far-infrared cavity and observed 17 new laser lines in the wavelength range 93.0 to 374.2 μ m, the 136.8 μ m line pumped by 10P(16) being a doublet . We measured the frequencies of the laser lines by heterodyne mixing of the far-infrared radiation with radiation from two frequency-stabilized CO_2 lasers.

Key words: N₂H₄, far-infrared laser, frequency measurement, N₂O pump laser

Contribution of CNPq, FAPESP, and NIST, not subject to copyright.

1. Introduction

Until recently, hydrazine (N_2H_4) had six known far-infrared (FIR) laser lines in the wavelength range 200 to 575 μm obtained by optically pumping the molecule with an N_2O laser [1,2]. We used an N_2O laser to pump molecules in the 10 μm region [3], and found 17 new laser lines in the spectral range

2295

93.0 to 374.2 μ m. We measured the wavelengths of the far-infrared laser lines by longitudinally moving one of the mirrors of the laser cavity and counting the laser modes, and their frequencies by heterodyne mixing of the far-infrared radiation with radiation from two frequency-stabilized CO_2 lasers.

2. Laser Description

The N₂O pump laser is a 1.5 m long cavity, described elsewhere [3], with typical powers of about 5-6 W. The FIR cavity was a rectangular metal-dielectric waveguide also described in detail elsewhere [4].

3. Measurements

We determined the far-infrared wavelengths by varying the cavity length over about ten wavelengths and measuring the length span with a micrometer. The wavelength value thus obtained is accurate to about 0.05 mm. The FIR frequency measurement was accomplished by heterodyne mixing of two frequency-stabilized CO₂ lasers with a microwave frequency and the FIR radiation to be measured [5]. The accuracy in the wavelength estimation is enough to select the CO₂ laser lines for the heterodyne measurement. The radiations are mixed in a metal-insulator-metal (MIM) diode which is also used to detect the FIR radiation when searching for new lines. A beat note is generated in the diode, and the FIR frequency is obtained from the equation

$$v_{FIR} = |v_1 - v_2| \pm mv_{uwave} \pm v_{beat}, \qquad (1)$$

where v_1 and v_2 are the CO₂ laser frequencies, $v_{\mu\nu\alpha\nu}$ is the frequency of the microwave source, v_{best} is the beat note frequency, v_{FIR} is the laser frequency to be measured, and the integer m is a harmonic number. The frequencies v_1 , v_2 and $v_{\mu\nu\alpha\nu}$ are chosen so that

$$0 < |v_{\text{heat}}| < 1.5 \text{ GHz} \tag{2}$$

4. Results and Conclusion

Table I shows the total of 23 N_2O laser pumped N_2H_4 laser lines, known to date: 17 new lines plus six previously known lines, along with their N_2O laser pump line and power, wavelength, pressure of operation, and relative intensity. The previously known 10P(11) 575.0 μ m and 10P(24) 237.0 μ m lines were not observed in this work. The reported wavelength values of the

Hydrazine Laser 2297

six previously known laser lines were consistently lower than our measurements with differences from 3 to 19 $\,\mu m$.

Table II shows 15 observed far-infrared laser lines pumped by an N_2O laser, along with their measured frequency, calculated wavelength, calculated wavenumber, and N_2O laser pump line. The 10P(16) 136.8 μm line is a doublet. These preliminary results have shown the potential of this new pumping laser in producing many more far-infrared laser lines in hydrazine, many with wavelength less than 150 μm .

Table I - FIR lines from N₂H₄ optically pumped by an N₂O laser.

===					
Pump	Wavelength	Pressure	Rel.	N_2O	Reference
Line			Int.	Power	
	μm	Pa(mTorr)		W	
10R(38)	339.4	19(140)			New
10R(36)	98.0	35(260)	S	3.2	New
10R(25)	106.19	19(140)	W	5.0	New
10R(24)	257.5	15(110)	W	4.2	New
10R(11)	330.57	15(110)	W	5.2	1
10R(4)	218.84	9(70)	vw	2.6	New
10P(7)	218.59	27(200)	VS	5.0	1
10P(11)	161.28	9(70)	W	6.0	New
10P(11)	575.0°		VS		1
10P(15)'"	113.93	19(140)	M	5.4	New
10P(15)"	232.74	7(50)	W	5.8	New
10P(15)'	374.24	9(70)	M	5.8	1
10P(16)	136.79 ^b	13(100)	S	6.0	New
10P(24)	120.62	27(200)	VS	6.0	New

2298			Vasconceilos	, Tachikawa,	, Zink, and Evenson
10P(24)	237.0ª		S		1
10P(26)	114.2	21(160)	S	4.0	New
10P(28)	492.4	17(130)	M	5.0	1
10P(29)	241.6	16(120)	vw	6.0	New
10P(30)	157.58	8(60)	S	4.0	New
10P(34)	210.21	7(50)	S	3.8	New
10P(34)	287.96	13(100)	w	4.4	New
10P(32)	93.04	24(180)	vvs	4.0	New
10P(45)	106.18	23(170)	S	1.8	New

¹ Torr = 133.3 Pa.

VW,W,M,S,VS,VVS stand for: very weak, weak, medium, strong, very strong, and very very strong, respectively.

Table II - Frequency Measurements of an N2H4 far-infrared laser pumped by an N₂O laser.

N₂O Line	Measured Frequency MHz	Calculated Wavelength μm	Calculated Wavenumber cm ⁻¹
10P(32)	3 222 036.9	93.044	107.4756
10P(45)	2 823 544.5	106.176	94.1833
10R(25)	2 823 287.0	106.186	94.1747
10P(15)'"	2 631 380.7	113.930	87.7734
10P(24)	2 485 511.6	120.616	82.9077
10P(16)	2 191 609.6	136.791	73.1042
,	2 191 613.7	136.791	73.1044
10P(30)	1 902 430.3	157.584	63.4582

^{&#}x27;,", and '" indicate different N_2O laser frequency offsets from line center.
not observed in this work.

b doublets.

5. References

- 1. H. Jones, G. Taubmann, and M. Takami, "The optically pumped hydrazine FIR laser: assignments and new laser lines," IEEE J. Quantum Electron., Vol. QE-18, pp. 1997-1999 (1982).
- 2. N. G. Douglas, Millimeter and Submillimeter Wavelength Lasers, p. 223, Springer-Verlag, New York (1989).
- Maki Tachikawa, Kenneth M. Evenson, Lyndon R. Zink, and Arthur G. Maki, "Frequency Measurements of 9- and 10- μm N₂O Laser Transitions," IEEE J. Quantum Electron., Vol.QE-32, pp. 1732-1736 (1996).
- 4. M. Inguscio, F. Strumia, K.M. Evenson, D.A. Jennings, A. Scalabrin, S. R. Stein, "Far-Infrared CH₃F Laser," Opt. Lett., Vol. 4, pp. 9-11 (1979).
- F.R. Petersen, K.M. Evenson, D.A. Jennings, J.S. Wells, K. Goto, J.J. Jimenez, "Far-Infrared frequency synthesis with stabilized CO₂ lasers: accurate measurements of the water vapor and methyl alcohol laser frequencies," IEEE J. Quantum Electron., Vol. QE-11, pp. 838-843 (1975).

^{*} Calculated from c= 299 792 458 m/s.

^b Previously reported. See refence 1.

^{&#}x27;, ", and '" indicate different N2O laser frequency offsets from line center.